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Le CO2 atmosphérique a dépassé 430 ppm...

La courbe de Keeling (https://scripps.ucsd.edu/programs/keelingcurve/)

*Latest CO, reading: 428.27 ppm

Carbon dioxide concentration at Mauna Loa Observatory*
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} ‘ CO, et changement climatique
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Scripps Institution of Oceanography
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H CO, et acidification des océans

Atmospheric CO, at
—— s
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L'augmentation du CO,
est la principale cause
de l'acidification des
océans
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Emissions anthropiques

Fossil Fuel & Cement CO, Emissions

Projecbon 2025
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Source: Friedlingstein et al. 2025 ; Global Carbon Budget 2025



Emissions anthropiques

Fossil Fuel & Cement CO, Emissions

Annual fossil CO. emissions per capita. top six emitters
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.] Emissions anthropiques

Emissions — responsabilités differenciées

Fossil CO, emissions: Perspectives on responsibility
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http://unstats.un.org/unsd/default.htm
https://doi.org/10.5194/essd-15-5301-2023
http://www.globalcarbonproject.org/carbonbudget/

.] Emissions anthropiques
Emissions : comparison to scenarios

with uncertainty, mar ked by the shading from low to high emissions under each scenarno
Warming refers 1o the al temperature rise by 2 100, relative Lo pre-industrial temper ures.
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Emissions anthropiques

... liees aux changements d’utilisation des sols

Estimates from three bookkeeping models
Source: Friedlingstein et al #025; Global Carbon Project 2025



https://doi.org/10.5194/essd-15-5301-2023
http://www.globalcarbonproject.org/carbonbudget/

Emissions anthropiques

Annual CO, Emissions
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parts per million (ppm)

Depuis I'atmosphere...

Atmospheric CO, ot Mauna Loa Observatory
———— —
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Depuis I'atmosphere...

http://www.esrl.noaa.gov/gmd/ccgg/globalview/
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Emissions vs. Taux de croissance dans l’'atm.

Seule la moitié des émissions s'accumulent dans I'atmosphere
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I Les puits de carbone

Emissions

Land : Ocean:
Fertilisation Dissolution
Of excess CO,

ACO, = Emissions —F_ocean—F_land



Partitionner les puits

Use of O2 atm. observations to constrain the carbon cycle (Keeling and Shertz, 1992)
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I Partitionner les puits

Use of O2 atm. observations to constrain the carbon cycle (Keeling and Shertz, 1992)
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Partitionner les puits

Use of O2 atm. observations to constrain the carbon cycle (Keeling and Shertz, 1992)
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Le bilan carbone de la derniere décennie (2015-2024)

Sources| = |Sinks
20.4 GtCO,/yr
35.9 GtCO,/yr 50%
88%
21%
8.7 GtCO,/yr
12%
5.0 GtCO,/yr 29%
11.8 GtCO,/yr

Budget Imbalance: <1%
(the difference between estimated sources & sinks) 0.1 GtCO,/yr

Source: Friedingstein et 3l 2025 Global Carbon Project 2025




Le puits de carbone océanique

Dissolved
Inorganic
Cycle Naturel du Carbone Carbon (DIC)
—> Largement piloté par la biologie H,CO, : 0.5 %
- o | HCO, :88.6 %
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Le puits de carbone océanique

- s’explique par des processus physico-chimiques

Le principal moteur du puits est 'augmentation
du CO, atm. (et de la ApCO, associée)

Mais ce puits dépend :

- de la solubilité du CO,

- de l'effet « tampon » /
chimie des carbonates

CO, + CO;2 + H,0 > 2HCO,"

- du transfert du CO,
anthropique vers les eaux de -
subsurface / en profondeur #°

F|L|X - kW SCOZ ApCOZ

Carbone Anthropique
entre 1994 et 2007
(Gruber et al. 2019)

10
A C,, (umol kg)




Projections pour le 21eme siecle
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Méthodes d’élimination du CO, atmosphérique



I Une rétroaction climat-carbone ?

Emissions CO, atmosphérique Changement Climatique

Puits Terrestre Puits Océanique



I Une rétroaction climat-carbone ?

Emissions CO, atmosphérique Changement Climatique

Puits Terrestre Puits Océanique

D By altering the efficiency of carbon sinks, climate change
affects the concentration of CO,

D Positive or negative feedback ?



I Des indices sur de multiples echelles de temps

Glacial - Interglacial: CO, & Climate

- Cycles G-IG, Variabilité des échanges avec I'océan, CO, atmosphérique
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E Des indices sur de multiples echelles de temps

Interannual Variability: CO, & El Nifio
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Projections couplées climat-carbone

Modeles climatiques
et super-calculateurs
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Projections Climatiques

09/2006

Arctic Sea Ice

Carbon Stocks
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D Quelle amplitude pour la rétroaction climat-carbone ?

Emissions

> CO, > Climat
Puit . .
HIts Découplé

Emissions

Les premiéres simulations couplées climat-carbone : Cox et al. Nature 2000
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Un seul modeéle : HadCM3
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[Eétroaction Positive !

Le changement climatique
conduit a une contraction de
la forét amazonienne et a une
perte massive du carbone du
sol.

La rétroaction conduit a un
CO, additionnel de 200 ppm
en 2100 !



D Quelle amplitude pour la rétroaction climat-carbone ?
-> Le puits de carbone océanique
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D Quelle amplitude pour la rétroaction climat-carbone ?
-> Le puits de carbone océanique
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D Quelle amplitude pour la rétroaction climat-carbone ?
-> Le puits de carbone océanique
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Ce que NOouUsS sSavons .

@ Le puits futur dépend
principalement de la trajectoire du
CO, atmosphérique.

@ Mais avec une saturation en raison
de la chimie des carbonates

_ A[CO;] |, AIDIC]
Revelle factor = TCO,T /

@ Le changement climatique réduit
I'efficacité du puits de carbone
océaniqgue (diminution de la
solubilité, océan plus stratifié).

@ Le puits de carbone océanique tend
vers zéro lorsque le CO2 se
stabilise...



lj Retour aux emissions — eémissions compatibles

Every tonne of CO, emissions adds to global warming
Global surface temperature increase since 1850-1900 (°C) as a function of cumulative CO; emissions (GtCO,)
°C
SSP5-8.5

The near-linear relationship 55P3.7.0
between the cumulative

COy; emissions and global

warming for five illustrative

scenarios untdl year 2050 SSP1-2.6

SSP1-1.9

Historical globad
Warming
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E Retour aux emissions — eémissions compatibles

Every tonne of CO, emissions adds to global warming

Global surface temperature increase since 1850-1900 (°C) as a function of cumulative CO, emissions (GtCO,)
O,
C

The near-linear relationship SSP3.7.0
between the cumulative

COy emissions and global

warming for five illustrative

scenarios untdl year 2050 SSP1-2.6

Historical globad
warming
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E Retour aux emissions — eémissions compatibles

Le budget carbone restant pour limiter le réechauffement
climatique a 1,5 °C, 1,7 °C, 2 °C est respectivement de 235,
585 et 1110 GtCO,, ce qui correspond a 6, 14 et 27 ans

a partir de 2025.

1.5°C 3 7E 2.0°C

(50% fkekhood) (50% Mcelihood) |50% fieshood)

“
Gt COz u gg?ns‘glmg



E Retour aux emissions — eémissions compatibles

Global Emissions CO, Energy and Industrial Processes

40 Gt
CO,

30 ~ 1.5°C target for 2030:

_ / 20 GtCO/yr
20 T

10

0 net-negative global emissions

2000 2020 2040 2060 2080 2100



I Bilan carbone des dernieres décennies
Emissions anthropiques
Puits de carbone naturels

l] Projections pour le 21eme siecle
Couplage climat carbone
Emissions compatibles

.] Méthodes d’élimination du CO, atmosphérique



D Eliminer du CO2 déja dans |I'atmosphere ?

Une définition :
o Retirer du CO, de I'atmosphere pour le stocker durablement dans différents types de
réservoirs (CDR — Carbon Dioxide Removal)

o Considérées comme de la géo-ingénierie, mais pas pour toutes. La distinction est liée a
leur ampleur, leur échelle d’application et leurs effets (GIEC, 2021)

Leur intérét :
o Neécessaires pour atteindre la neutralité carbone afin de contrebalancer les émissions
résiduelles de certains secteurs ; d’atteindre des émissions nettes négatives

o Pourraient permettre de faire diminuer de quelques dixiemes de degrés la température
de surface planétaire apres un dépassement ; et aider a contre-balancer des rétroactions
amplificatrices climat-carbone (ex : émissions liées au dégel de sols gelés)

Et des questions ?
o Efficacité, codt, faisabilité a grande échelle, et des répercussions environnementales tres
variables selon les techniques considérées




Eliminer du CO2 déja dans |I'atmosphere ?

Methods of CO2 removal

from the atmosphere Direct-Air-Capture
and Carbon Sterage
(DACCS)

Afforestation/
Bioenergy wn
Carbon Capture

and Slorage
‘-\‘— ".\..Allullnluuon (BECCS)

m'. ) ‘ oy e

o,

Artificial
Carbon storage

upwellin
9 in the coastal zone

\ weathering

s LN

S0l I xatior
2% carbonaes 1 - Carbon
basaltic orust CO, storage storage
in sandstone




lj Eliminer du CO2 déja dans |I'atmosphere ?

Only a tiny fraction of all carbon dioxide removal results from novel methods
Total amount of carbon dioxide removal, split into conventional and novel methods (GtCO,/yr)

.
-2.5 -2.2 -2 -1.5 -1 0.5 0 GtCO,/yr

CDR auj. : ~2,2 GtCO,
par an, principalement
par des méthodes
conventionnelles comme
I’afforestation et la
reforestation.

|| conventional COR

Capture nd storage (BECCS)
B Biochar Nouvelles méthodes de
[l chanced rock weathering CDR : 1,3 MtCO, par an,
Il other novel coR soit moins de 0,1 % du

GtCO,/
0 " total.

-0.0015 -0.0013 -0,0010 -0.0005
.

(State of CDR report, 2024)



Les techniques océaniques
d’élimination du CO, (mCDR?¥)
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OCEAN
Negative Emission
Technologies

MCDR = Marine Carbon Dioxide Removal

@OceanNET, GEOMAR




Les techniques océaniques
d’élimination du CO, (mCDR?¥)

Physical carbon pump Biological
Soft tissue pump
CO, CO,
Henry's Law
cold warm Photosynthesis
DIC 4 DIC § POCA & ® .
DICYy ~w :
@ )
overturning slnklngl\ §
circulation ° §

Meéthodes « Inorganiques »
(Downwellings, Injection,
Alcalinisation, ...)

Meéthodes « Organiques »
(Fertilisation, Upwellings,
Macroalgues, ...)



Les techniques organiques — la fertilisation par le fer

Comment ?

En ajoutant un nutriment limitant pour

fertiliser le phytoplancton marin ""f"f». ¢ Gt
Flev/Né.P! -.
fertilization

Pour?

Augmenter I'export de carbone organique
vers les profondeurs ou le carbone est
séquestré > 100 a 1000 ans.

Qui?

John Martin (1935-1993)

“Give me a half tanker of iron, and | will
give you an ice age.”



Les techniques organiques — la fertilisation par le fer

Un paradigme de longue date...
if nutrient are abundant and light not limiting,
we should find high levels of phytoplankton

Chla, SEAWiFS Nitrates, WOA2001

Mais présence d’eaux dites High Nutrient, Low Chlorophyll (HLNC)
eg. North Pacific, Equatorial Pacific, Southern Ocean



Les techniques organiques — la fertilisation par le fer

Dans les années 1990 et 2000, plusieurs expériences
de fertilisation au fer ont été réalisées !
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Les techniques organiques — la fertilisation par le fer

Dans les années 1990 et 2000, plusieurs expériences
de fertilisation au fer ont été réalisées !

IRONEX2, Eq. pac, 1996

SOIREE, Southern Ocean, 1999

iron fertilization in the
equatorial Pacific

i st P P -
0.02 0.04 0.08
i , KAAEVE T s
A tanglled tale of Aizhelmer's Ssonse

Optical data storage ssing paptidas SOIREE after 42 dayS
How birds smell danger Ocean Color from SeaWiFS
Abraham et al., 2000




Les techniques organiques — la fertilisation par le fer

In-situ iron fertilization experiments: effects on pCO2 (SOIREE Exp.)
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(Watson et al. 2000)



Les techniques organiques — la fertilisation par le fer

Au début des années 2000...

Plusieurs start-ups / Dépots de brevets

Planktos
Ocean Farming Inc. hetp . www Soctmmaveniuae com'
GreenSea Venture Inc ...

GreenSea I e d S
VENTUS S INC .',_\'___:;/ = €SV
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Shense GreenSea Mission
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Les techniques organiques — la fertilisation par le fer

Mais aussi au début des années 2000...

Bien moins efficaces que ce qui

était initialement projeté...

Impact de la fertilisation par le fer sur la
(effet max. : -30 ppm) biomasse animale (en 2090-2100, t/m?)

Non « permanence » - si arrét
de la fertilisation, les effets sont
perdus apres quelques
décennies.

COO0O =W
OO0 wLwomwm
0O Ww

D'importants effets collatéraux
ailleurs (par exemple, une
diminution de la productivité)

-1.
-3

Et des émissions probables
d'autres gaz a effet de serre. Tagliabue et al. 2023



Les techniques organiques — la fertilisation par le fer

Mais aussi au début des années 2000...

Bien moins efficaces que ce qui
était initialement projeté...

Impact de la fertilisation par le fer sur la
(effet max. : -30 ppm) biomasse animale (en 2090-2100, t/m?2)

Non « permanence » - si arrét
de la fertilisation, les effets sont
perdus apres quelques
décennies.

CO0O0~W
000 LHomwowom
0 OO W

D'importants effets collatéraux
ailleurs (par exemple, une
diminution de la productivité)

I |
W -

En 2008 : Moratoire / Convention de Londres pour stopper les entreprises commerciales
qui se préparaient a utiliser cette technique pour des crédits carbone... exemption pour
les études scientifiques si a petite échelle...




Les techniques inorganiques — Alcalinisation

Comment?
En ajoutant de l'alcalinité (roches
silicatées, carbonatées, NaOH, chaux

vive...)
Alkalinization

Pour?

Déplacer I'équilibre des carbonates et
favoriser I'absorption de CO,

- ? Enmergy Yo‘ 20, No. 9, pp. 915-922, 1995
Qui : @ Pergamon 0360-5442(95)00035-6 o o O B AT Tl rrind
. 030544295 S950+ 000
Kheshgi (1995), ....
SEQUESTERING ATMOSPHERIC CARBON DIOXIDE BY
INCREASING OCEAN ALKALINITY

HAROON S. KHESHGI
Corporate Rescarch Laboratones, Exxon Research and Engincenng Company, Annandale, NJ 0880, US.A

Ca0 + 1.79 CO, + 0.79 H,0 + ... — Ca®* + 1.62 HCO; + 0.17 CO3 + ...



Les techniques inorganiques — Alcalinisation

a One Tree Island

Comment ?

En ajoutant de l'alcalinité (roches

silicatées, carbonatées, NaOH, chaux d Study area

vive...) —
b

Pour ? |

Déplacer I'équilibre des carbonates et
favoriser I'absorption de CO,

Qui ?
Kheshgi (1995), ....

o
Sampling
station
o
—

Downstream Dominant flow Upstream
transect transect

Points positifs
- Pas de limite géophysique / géochimique
- Durabilité du stockage de carbone

- Co-bénéfices pour l'acidification __ - —>  Expériences dalcalinisation..
(ici augmentation de la calcification du corail)

(Albright et al. Nature 2016)

s




Les techniques inorganiques — Alcalinisation

added TA [umol/kgw]
S ® ® & ©
S & & & & & S
0 A & f N N P A

Com ment ? 4800 a. TA, a!:;iotic - no;l-eql‘lilibr‘atedl
En ajoutant de l'alcalinité (roches . day 0
silicatées, carbonatées, NaOH, chaux g %] .
Vive...) < 3000- “ee
5 % day 1
3 2400
Hartmann et al. 2022 ¢ "
Pour ? ® 1600, “., day4

Déplacer I'équilibre des carbonates et
favoriser I'absorption de CO,

Points positifs

- Pas de limite géophysique / géochimique
- Durabilité du stockage de carbone

- Co-bénéfices pour l'acidification Points négatifs

- Précipitation de carbonates et
réduction de l'efficacité

- Impact sur les écosystemes

- Difficulté a « monitorer », colt ?



Pour conclure...

Full record ending January 26, 2026

88

*Mauna Kea data In blue
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CO; Concentration (ppm)
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https://keelingcurve.ucsd.edu/



Pour conclure...
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Pour conclure...
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Pour conclure...
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