L'exploration de Sagittarius A*, le trou noir super massif de notre galaxie

Société Philomathique de Paris

Guy Perrin

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Mardi 2 avril 2024

Le trou noir : objet de l'imaginaire commun

Le trou noir d'Interstellar (2014)

Le premier suspect trou noir : Cygnus X-1 (1965)

Détection en rayons X et mesure de la masse par l'orbite du compagnon (~10 M_☉)

Détection de trous noirs par ondes gravitationnelles

Interféromètre franco-italien VIRGO

Détection de trous noirs par ondes gravitationnelles

Fusion de deux trous noirs stellaires

Détection d'ondes gravitationnelles

Fusion de deux trous noirs stellaires

Le zoo de trous noirs stellaires (2021)

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Catalogues des fusions de trous noirs mesurées par ondes gravitationnelles (novembre 2021)

Les suspicions de trous noirs super-massifs au cœur des galaxies

Radio galaxie Hercules A (~4x10⁹ M_•)

Une réalité très ancienne

Pic d'accrétion de matière sur les trous noirs super-massifs

Des quasars très précoces sont détectés peu de temps après le Big Bang $(100-1000 \times 10^6 \text{ M}_{\odot})$

~ 400.10° années z = 10,6 1,6-3,2.10⁶ M_{\odot} Maiolino et al. (2024) JWST 1^{ers} soupçons d'un objet compact super massif au centre de la galaxie : naissance de Sagittarius A*

Détection d'une source compacte et brillante au centre de la galaxie en radio (2,7 GHz, 11cm)

Tailles en u.a. : 1" ⇔ 8100 u.a. 0,1" ⇔ 810 u.a.

1 u.a.= ~150.10⁶ km 1 unité astronomique Distance Terre-Soleil

Balick & Brown (1974)

La mesure des fusions de trous noirs super-massifs par LISA

Interféromètre spatial à ondes gravitationnelles aux bras de plusieurs millions de km

Trous noirs et relativité générale

1783 – J. Michell et 1798 - P.-S. de Laplace : intuition des *étoiles* noires (théorie corpusculaire et vitesse finie de la lumière).

1905 - Einstein : Relativité restreinte :

- espace-temps
- durées et longueurs dépendent de la vitesse de l'observateur (temps élastique)

1915 - Einstein : Relativité générale :

- mariage de la relativité et de la gravitation
- bon cadre pour la description des trous noirs

Manifestations d'effets de relativité générale

Déviation des rayons lumineux par le Soleil (1^{ère} preuve de la relativité générale en champ faible par Eddington dès 1919)

Sens de la précession

Avance du périhélie de Mercure

Mirages gravitationnels

Sens de l'orbite

Comment forme-t-on un trou noir ? $R_{Schwarzschild} = R_{trou noir} = \frac{2GM}{c^2}$

Le Soleil serait un trou noir s'il avait la taille du Paris de 1789 $(2x \frac{2GM_{Soleil}}{c^2} = 6 \text{ km})!$

La Terre serait un trou noir si elle avait la taille d'un dé à coudre $(2x \frac{2GM_{Terre}}{c^2} = 2 \text{ cm})$! Par quels processus peut-on arriver à de telles densités ?

Paris Mur des fermiers généraux 6 km

6 ∎10²⁴ kg 12 800 km

2 cm

Trous noirs stellaires

Exemple type : Cygnus X-1

Par accrétion de la masse d'un compagnon (étoiles de masse faible ou intermédiaire)

Cassiopée A

Par effondrement d'une étoile massive et explosion en supernova

Formation des structures de l'univers Trous noirs supermassifs (10⁶ - 10⁹ M_{soleil})

Les trous noirs n'ont pas de cheveux (Carter, Hawking, Israël, 1973)

Un trou noir est entièrement déterminé par trois paramètres :

- sa masse
- son taux de rotation
- sa charge électrique

Comment voir les trous noirs ?

C'est très simple : il suffit de les éclairer !

Le halo marque la *sphère des photons* à 1,5 x l'horizon du trou noir

Un disque autour d'un trou noir

Marck (1989)

Quelle est la dimension apparente d'un trou noir?

Trous noirs stellaires

très petits : R_{trou noir} ~ quelques km à 1 parsec : 10⁻¹⁰ seconde d'angle (plus petit qu'une cellule humaine sur la Lune vue depuis la Terre)

Trous noirs super-massifs très gros : R_{trou noir} ~ quelques 10⁶-10⁹ km mais galaxies très lointaines

Le plus grand angulairement c'est Sgr A* Taille apparente de l'horizon (2 rayons de Schwarzschild) : 53 micro-secondes d'angle = 5x1€ sur la Lune Ou encore deux cheveux à Lyon vus depuis Paris !

Sagittarius A* (Sgr A*) au cœur de notre galaxie

Modèle de la Voie Lactée

Le centre de la Galaxie

Opaque à cause de la poussière.

Observations aux longueurs d'onde des domaines radio et infrarouge ou X

Observations dans l'infrarouge proche

La turbulence atmosphérique

Observation d'une source ponctuelle à travers l'atmosphère terrestre turbulente (étoile non résolue par le télescope)

tache image turbulente longue pose

résolution angulaire du télescope

Image d'une étoile double serrée

Un miroir <u>déformable</u> corrige à tout instant le front d'onde incident

> Un calculateur spécialisé <u>optimise</u> la correction

Un senseur analyse les erreurs résiduelles

Le front d'onde corrigé peut être focalisé

Le miracle de l'optique adaptative (séquence réelle, NAOS, VLT)

Observations du Centre Galactique dans l'infrarouge proche avec optique adaptative

0.05 pc 80 x Système Solaire 1 "

Le VLT, *Very Large Telescope* 4 télescopes européens de 8,20 m au Mont Paranal au Chili

Un des télescopes de 8,20 m du VLT

Orbite de l'étoile S2 observée par l'optique adaptative du VLT NAOS

Schödel et al. (2002)

Orbite de l'étoile S₂ observée par l'optique adaptative du VLT NACO

Schödel et al. (2002)

1^{er} calcul précis de la masse de Sgr

Application de la 3^{ème} loi de Kepler :

$$M_{Sgr A*} = 4,31 \pm 0,42 \ \square 10^6 M_{Soleil}$$

 $(d = 7,62 \pm 0,32 \text{ kpc})$

Gillessen et al. (2009)

Des sursauts lumineux près de la dernière orbite circulaire stable

L'instrument GRAVITY

GRAVITY combine les 4 UT (8,20 m) ainsi que les 4 AT (1,80 m) du VLT depuis début 2016 (idée : 2005)

1 seconde d'angle = 4,85 10⁻⁶ rad = 1 personne à Lyon
1 mas = 1 milli-seconde d'angle = 1 personne sur la Lune
50 μas = 50 micro-secondes d'angle = 2 cheveux à Lyon

Le consortium GRAVITY

Des images à très haute résolution angulaire

Détection du rougissement gravitationnel avec S2

Dilatation du temps

⇔ diminution de la fréquence
⇔ augmentation de la longueur d'onde
⇔ rougissement

Les données de l'étoile S2

GRAVITY Collaboration, A&A 615, L15 (2018)

Orbite képlérienne vs. orbite relativiste

PPN (1) terms:
$$z = \frac{\Delta \lambda}{\lambda} = B_0 + B_{0.5}\beta + B_1\beta^2 + O(\beta^3)$$

$$B_1 = B_{1,tD} + B_{1,gr}$$

Astrométrie

 $f_{RG} = 0$: Newton $f_{RG} = 1$: Einstein

Résultat GRAVITY : $f_{RG} = 1,04\pm0,04$ (avec précession)

Masse de Sgr A* : 4,11 \pm 0,03 \times 10⁶ M_{\odot} (précision de 0,6%)

Distance à Sgr A* : 8127 ± 31 pc (précision de 0,4%)

GRAVITY Collaboration, A&A 615, L15 (2018)

La précession relativiste de S2

 $\Delta \Phi_{per \ orbit} = f_{SP} \times 3\pi \left(\frac{R_s}{a(1-e^2)}\right) + f_{LT} \times 2\chi \left(\frac{R_s}{a(1-e^2)}\right)^{3/2}$ $PPN(1)_{\Phi} : \text{ Schwarzschild Precession}$ S2:11.9'Test de la pression relativiste :

 $f_{\rm SP}$ =1,10±0,19

Einstein confirmé à 5σ

Orbite S2/10

Masse étendue inférieure à 0,1% ou 4000 M_{\odot}

GRAVITY Collaboration, A&A 636, L5 (2020)

Nouvelle mesure de la précession relativiste de S2

0.03 0.02 0.01 Sgr A" 0.00 -0.01 — \$2, Peri: 2018.4 -0.02\$29, Peri: 2021.4 100 AU \$38, Petr: 2022.7 -0.03\$55, Peri: 2021.7 0.04 0.02 0.00 -0.04-0.02RA["]

GRAVITY Collaboration, A&A 657, L12 (2022)

Nouveau test avec S2, S29, S38 et S55

Test de la pression relativiste :

 $f_{\rm SP}$ =0,997±0,144

Einstein confirmé à 7σ

Masse étendue inférieur à 0.1% ou 4000 M_{\odot} à l'intérieur de l'apocentre : confirmée (profil de Plummer)

Des sursauts lumineux près de la dernière orbite circulaire stable

3 sursauts observé les 27 mai, 22 et 28 juillet 2018

Ajustement avec un modèle relativiste de point chaud:

 $R = 3.6 \pm 0.25 \text{ R}_{\text{trou noir}}$ $P = 40 \pm 8 \text{ min}$ $=> v_{\text{orb}} \sim 0.3 \text{ c}$

Boucle de polarisation

Fort degré de polarisation linéaire (qq 10%)

(émission synchrotron)

Boucle de polarisation du 28 juillet avec $P_{pol} \sim P_{orb}$

Modélisation des boucles de polarisation

Champ magnétique poloidal pour obtenir des boucles avec $P_{pol} \sim P_{orb}$ $(P_{pol} \sim 0.5 \text{ x} P_{orb} \text{ avec un champ toroidal})$

Boucles : courbure des géodésiques

Géométrie avec un pôle fortement incliné pour des boucles centrées dans le plan (Q,U) avec un rayon de quelques R_{Sch}

Contraintes sur l'inclinaison de l'orbite

Les 3 orbites sont totalement compatibles avec un trou noir de 4 millions de masses solaires

Le Event Horizon Telescope

Interféromètre intercontinental aux longueurs d'onde millimétriques

M87* et Sgr A* vus par l'EHT

Les deux trous noirs sont vus par leurs pôles! 🙆

Boucles de polarisation à 229 GHz (1,3 mm)

Acquisition pendant un sursaut en X le 11 avril 2017

Période ~70 minutes

Inclinaison du disque de plasma : ~20°

Rayon de l'orbite : 5 R_{Sch}

Sens horaire

Champ magnétique poloidal

Wielgus et al., A&A 665, L6 (2022)

Contributions de GRAVITY et l'EHT aux tests de la relativité générale

April 11, 2017

L'objet super-massif et compact au centre de la Voie Lactée

Prix Nobel de physique 2020

Reinhard Genzel

Andrea Ghez

Roger Penrose

Merci de votre attention !